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CONTROL PROBLEMS FOR THE STEADY-STATE

EQUATIONS OF MAGNETOHYDRODYNAMICS

OF A VISCOUS INCOMPRESSIBLE FLUID

UDC 537.84G. V. Alekseev

Control problems for a steady-state model of the magnetohydrodynamics of a viscous incompressible
fluid in a bounded domain with an impermeable, perfectly conducting boundary are formulated. The
resolvability of the problems is studied, the use of the Lagrange principle is justified, and optimality
systems are analyzed.
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The problems of controlling viscous conducting flows play an important role in some applied areas of mag-
netohydrodynamics, including the development of magnetohydrodynamic (MHD) generators, the design of new
underwater engines, the modeling of nuclear reactor cooling systems, and nuclear fusion control [1, 2]. The de-
velopment of methods and algorithms for solving the indicated problems has been the subject of much research.
Theoretical issues related to analysis of the resolvability and properties of control problems have been studied less
extensively. The present paper considers the indicated problems for the MHD-model of a viscous fluid.

1. Formulation of the Boundary-Value Problem. Let Ω be a bounded domain with an imperme-
able, perfectly conducting boundary Γ. We consider the boundary-value problem for the steady-state equations of
magnetohydrodynamics of a viscous fluid in the domain Ω. In dimensionless variables, this problem has the form

−ν∆u+ (u · ∇)u+∇p− µ rotH ×H = f , divu = 0; (1.1)

νm rotH −E +H × u = E0, divH = 0, rotE = 0; (1.2)

u = 0 on Γ, H · n = 0, E × n = 0 on Γ. (1.3)

Here u, H, and E are the velocity and the electric- and magnetic-field strength vectors, respectively, p is the
pressure, ν = 1/Re, νm = 1/Rem (Re is the Reynolds number and Rem is the magnetic Reynolds number), µ is
a dimensionless parameter, f is the dimensionless vector of the external body force vector, E0 is the strength of
extraneous forces (for the physical meaning and properties of the function E0 see in greater detail in [3, p. 47]).

The goal of the present study is to formulate and study control problems for the model (1.1)–(1.3). To
formulate the control problem, we divide the initial data, i.e., the pair (f ,E0), into two groups: a group of rigid
(unchanged) data and a group of controls. The first group includes the density f , and the group of controls includes
the function E0, which is considered unknown and is chosen from the minimum condition for a particular quality
functional (see Sec. 3).

To investigate the thus formulated control problem, we employ the procedure designed in [4–6] for control
problems based on steady-state heat- and mass-transfer models. This procedure reduces control problems to prob-
lems belonging to the class of conditional extremum problems in Hilbert spaces, in which the main constraint is
a weak (in the sense of generalized functions) formulation of the model. A theory for solving abstract problems
of this type has been developed (see, for example, [7]). This approach considerably simplifies the derivation of an
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optimality system and reduces construction of this system to verification of a number of conditions that ensure
validity of the indicated theory. For our problem, such conditions are the continuous differentiability of the quality
functional and the operators of the examined model with respect to state variables (velocity, pressure, and temper-
ature), which is usually the case, and the convex dependence of the parameters on controlling parameters, which,
as a rule, is implied. The main condition to be verified is the Fredholm property of the linear operator equal to the
Frechet derivative of the operator of the examined model with respect to the state.

We note that for a simplified MHD-model (in which the strength H is considered specified), a control
problem similar in formulation is studied in [8], where the control was the electric current component normal to the
boundary.

In constructing the corresponding theory for the model (1.1)–(1.3), we use Sobolev’s spaces Hs(D) and
L2(Ω) ≡ H0(Ω) and their vector analogs Hs(D) (s ∈ R), where D means Ω or Γ. The scalar products in L2(Ω)
and L2(Ω) are designated by ( · , · ); the norm in L2(Ω) by ‖ · ‖; the norm or seminorm in H1(Ω) and H1(Ω), by
‖ · ‖1 or | · |1; and the duality ratio for the pair X and X∗ by 〈 · , · 〉X∗×X or 〈 · , · 〉. We set L2

0(Ω) = {p ∈ L2(Ω):
(p, 1) = 0}, H1

0 (Ω) = {ϕ ∈ H1(Ω): ϕg|Γ = 0}, H1
0 (Ω) = H1

0 (Ω)3, H1
T (Ω) = {h ∈ H1(Ω): h · n|Γ = 0},

H(rot; Ω) = {v ∈ L2(Ω): rotv ∈ L2(Ω)}, and H1(∆; Ω) = {v ∈ H1(Ω): ∆v ∈ L2(Ω)}. Here, in particular,
H1
T (Ω) consists of vectors h ∈H1(Ω) tangential on Γ. A detail description of the properties of these spaces is given

in [9–11]. Let the following conditions be satisfied:
Condition 1. Ω is a convex polyhedron or a bounded, finitely connected, domain in space R3 with boundary

Γ ∈ C1,1, consisting of p0 + 1 connected components Γ0,Γ1, . . . ,Γp0 (Γ0 is the boundary of the infinite component
of the set R3 \ Ω), and there exist surfaces Σi ∈ C2 (i = 1, 2, . . . , q0) such that Σi ∩ Σj = Ø for i 6= j; the set

Ω̃ = Ω \
q0⋃
i=1

Σi is simply connected and Lipschitzian.

Condition 2. f ∈ L2(Ω).
Condition 3. j ∈ L2(Ω).
The numbers q0 and p0 appearing in Condition 1 are referred to as the first and second Betti numbers,

respectively. They are topological characteristics of the domain Ω; p0 = 0 if and only if the boundary Γ is connected,
and q0 = 0 if and only if the domain Ω is simply connected. Let us introduce two spaces of vectors H(e) and H(m)
which are harmonic in Ω and consist of solutions of homogeneous problems of electric and magnetic type:

divE = 0, rotE = 0 in Ω, E × n = 0 on Γ,

divH = 0, rotH = 0 in Ω, H · n = 0 on Γ.

As is known, the spaces H(e) and H(m) are finite-dimensional; dim H(e) = p0 and dim H(m) = q0 [12]. Let us
designate the orthogonal addition to H(m) in L2(Ω) by H(m)⊥.

In the study of the problem, of key importance are the spaces H1
0 (Ω), V = {v ∈ H1

0 (Ω): div v = 0},
VT = {h ∈ H1

T (Ω) ∩H(m)⊥: divh = 0}, the product X = V × VT , and their dual spaces H−1(Ω) = (H1
0 (Ω))∗,

V ∗, V ∗T , and X∗ = V ∗ × V ∗T . Each of the spaces H1
0 (Ω), V , and VT is a Hilbert space with the norm ‖ · ‖1. The

space X is a Hilbert one with the norm (v,h)→ ‖(v,h)‖1 = (‖v‖21 +‖h‖21)1/2. The following orthogonal expansion
is valid [12]:

L2(Ω) = rotVT ⊕∇H1
0 (Ω)⊕H(e). (1.4)

It implies that any vector f ∈ L2(Ω) is represented in a single fashion as f = rot q + ∇ϕ + e. Here the vector
potential q ∈ VT , the scalar potential ϕ ∈ H1

0 (Ω), and the harmonic vector e ∈ H(e) I are uniquely determined
from f .

Let us introduce bilinear and trilinear forms:

a0(u,v) =
∫
Ω

∇u : ∇v dΩ, a1(H,Ψ) =
∫
Ω

rotH · rot Ψ dΩ,

c(u,v,w) ≡
∫
Ω

[(u · grad)v] ·w dΩ, c1(Ψ,H,u) =
∫
Ω

(rot Ψ×H) · u dΩ.
(1.5)

If Condition 1 is satisfied, the introduced forms are continuous and the forms a0 and a1 are in addition coercive in
the spaces V and VT , respectively [11, 12]. There exist constants C1, αi, γi, and γ′i (i = 0, 1) that depend on Ω
and satisfy the following inequalities:
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|a0(u,v)| 6 ‖u‖1‖v‖1 ∀(u,v) ∈H1(Ω)2, a0(v,v) > α0‖v‖2 ∀v ∈ V ; (1.6)

|a1(H,Ψ)| 6 C2
1‖H‖1‖Ψ‖1 ∀(H,Ψ) ∈H1(Ω)2, a1(Ψ,Ψ) > α1‖Ψ‖21 ∀Ψ ∈ VT ; (1.7)

|c(u,v,w)| 6 γ′‖u‖1‖v‖1‖w‖L4(Ω) 6 γ‖u‖1‖v‖1‖w‖1 ∀(u,v,w) ∈H1(Ω)3; (1.8)

|c1(Ψ,H,v)| 6 γ′1‖Ψ‖1‖H‖1‖v‖L4(Ω) 6 γ1‖Ψ‖1‖H‖1‖v‖1 ∀(Ψ,H,v) ∈H1(Ω)3. (1.9)

In addition, it is known (see, for example, [9]) that

c(u,v,v) = 0, c(u,v,w) = −c(u,w,v) ∀u ∈ V , v ∈H1
0 (Ω), w ∈H1

0 (Ω). (1.10)

We set ν1 = µνm, a((u,H), (v,Ψ)) ≡ νa0(u,v) + ν1a1(H,Ψ), and λ∗ = min (α0ν, α1ν1). By virtue of (1.6)
and (1.7), the form a is coercive in the space X with constant λ∗, so that

a((v,Ψ), (v,Ψ)) > λ∗‖(v,Ψ)‖21 ≡ λ∗(‖v‖21 + ‖Ψ‖21) ∀(v,Ψ) ∈ X. (1.11)

Below, we use the following Green formulas:

(u, gradϕ) = −(divu, ϕ) ∀u ∈H1
0 (Ω), ϕ ∈ H1(Ω); (1.12)

(rot q,w)− (q, rotw) = −〈q × n,w〉Γ ∀q ∈H(rot; Ω), w ∈H1(Ω); (1.13)

−(∆u,v) = (∇u,∇v) ≡
∫
Ω

∇u : ∇v dΩ ∀u ∈H1(∆; Ω), v ∈ H1
0 (Ω). (1.14)

Here q × n ∈ H−1/2(Γ) is the tangential trace of the function q ∈ H(rot; Ω) and 〈q × n,w〉Γ is the value of the
functional q × n on the element w|Γ ∈H1/2(Γ).

We note that the resolvability of the problem (1.1)–(1.3) has been explored in a number of papers [13, 14].
However, we cannot use the results of these studies because they were performed for different functional spaces
and different conditions on the initial data. Therefore, we first explore the resolvability of the problem (1.1)–(1.3)
(Problem 1).

2. Examination of the Problem 1. We shall introduce an element F ∈ X∗: 〈F , (v,Ψ)〉 = (f ,v)
+ µ(E0, rot Ψ). Obviously,

‖F ‖X∗ 6M ≡ ‖f‖+ µ‖E0‖. (2.1)

We multiply the first equation in (1.1) by v ∈H1
0 (Ω) and the first equation in (1.2) by µ rot Ψ (Ψ ∈ VT ), integrate

over Ω, and employ formulas (1.12)–(1.14). Taking into account that (E, rot Ψ) = 0 by virtue of (1.13) and the
conditions rotE = 0 in Ω and E × n = 0 on Γ, we obtain

ν

∫
Ω

∇u : ∇v dΩ +
∫
Ω

[(u · ∇)u] · v dΩ− µ
∫
Ω

(rotH ×H) · v dΩ−
∫
Ω

pdiv v dΩ =
∫
Ω

f · v dΩ; (2.2)

ν1

∫
Ω

rotH · rot Ψ dΩ + µ

∫
Ω

(H × u) · rot Ψ dΩ = µ

∫
Ω

E0 · rot Ψ dΩ. (2.3)

Summing up the restriction of the identity (2.2) on the space V and (2.3), we arrive at the weak formulation of the
Problem 1: to find a pair (u,H) ∈ X ≡ V × VT that satisfies the following identity, written with the notation of
Sec. 1:

a((u,H), (v,Ψ)) + c(u,u,v) + µ[c1(Ψ,H,u)− c1(H,H,v)] = 〈F , (v,Ψ)〉 ∀(v,Ψ) ∈ X. (2.4)

It should be noted that although the identity (2.4) do not include the pressure p and the electric field E,
these quantities can be found from a pair (u,H) ∈ X that satisfies (2.4). Indeed, setting Ψ = 0 in (2.4), we have
νa0(u,v) + c(u,u,v) − µc1(H,H,v) = (f ,v) ∀v ∈ V . Let us introduce a functional L = L(u,H,f) in H1

0 (Ω)
that acts by the formula 〈L,v〉 = νa0(u,v) + c(u,u,v)− µc1(H,H,v)− (f ,v). Obviously, L ∈H−1(Ω) and the
restriction of L on V satisfies the condition 〈L,v〉 = 0 ∀v ∈ V . In this case, from [10, p. 22] it follows that there
exist a function (pressure) p ∈ L2

0(Ω) such that the identity (2.2), which is equivalent to Eq. (1.1) in the sense of
generalized functions, is satisfied.
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Setting v = 0 in (2.4), we arrive at the identity (2.3), which implies that the vector νm rotH +H ×u−E0

is orthogonal to rot Ψ (Ψ ∈ VT is an arbitrary vector function). By virtue of (1.4), this is possible if and only if
νm rotH+H×u−E0 = gradϕ+e. Here ϕ ∈ H1

0 (Ω) is a scalar potential and e ∈ H(e) is a certain vector. We set
E = gradϕ+ e. Then, with allowance for the conditions rote = 0, e× n|Γ = 0, and ϕ|Γ = 0, we obtain rotE = 0
and E × n|Γ = 0; in this case, the triple (u,H,E) satisfies all relations in (1.2).

Note that a pair (u,H) ∈ V × VT that satisfies (2.4) uniquely determines the pressure p ∈ L2
0(Ω) and the

electric field E. Hence, we can correctly introduce the following definition.
Definition 2.1. Any pair (u,H) ∈ X ≡ V × VT that satisfies the identity (2.4) is called a weak solution

of the Problem 1.
To prove the existence of a solution (u,H) ∈ X of the problem (2.4), in the space X we introduce an

operator G: X → X that acts by the formula G(w,h) = (u,H) ∈ X. Here the pair (u,H) ∈ X is a solution of
the linear problem

a((u,H), (v,Ψ)) + aw,h((u,H), (v,Ψ)) = 〈F , (v,Ψ)〉 ∀(v,Ψ) ∈ X (2.5)

obtained by linearization of the nonlinear problem (2.4), where

aw,h((u,H), (v,Ψ)) = c(w,u,v) + µ[c1(Ψ,h,u)− c1(H,h,v)]. (2.6)

Clearly, the term c1(Ψ,h,u) in (2.6) obtained by linearization of the convective term c1(Ψ,H,u) in (2.4),
which has the meaning of Maxwell’s advective term, and the term −c1(H,h,v) obtained by linearization of the
term containing the Lorentzian force −c1(H,H,v) and occurring in (2.4) cancel for (u,H) = (v,Ψ). In addition,
because c(w,v,v) = 0 for v ∈ V by virtue of (1.10), the coercivity of the main form a on X, which follows
from (1.11), implies the coercivity of the sum of forms a + aw,h in (2.5) with the same constant λ∗. In this case,
the Lax–Milgram theorem [10] implies that for any pair (w,h) ∈ X, a solution (u,H) ∈ X of the problem (2.5)
exists and is unique; furthermore, with allowance for (2.1), the following estimate holds:

‖(u,H)‖1 ≡ (‖u‖21 + ‖H‖21)1/2 6M/λ∗ = (‖f‖+ µ‖E0‖)/λ∗. (2.7)

In the space X, we introduce a sphere Br = {(v,Ψ) ∈ X: ‖(v,Ψ)‖1 6 r}, where r = M/λ∗. From the construction
of the sphere Br, it follows that the operator G maps Br into itself. It is easy to show that G is compact and
continuous. In this case, Schauder’s theorem implies that the operator G has a fixed point (u,H) = G(u,H) ∈ X.
The indicated point (u,H) is the desired solution of the problem (2.4). Let us formulate the result obtained.

Theorem 2.1. If Conditions 1–3 are satisfied, at least one solution (u,H) ∈ X of the problem (2.4) exists
and the estimate (2.7) holds for this solution.

Let us establish sufficient conditions of the uniqueness of the weak solution of the Problem 1.
Theorem 2.2. Let Conditions 1–3 be satisfied. Then, there exists not more than one weak solution of the

Problem 1 that satisfies the conditions

‖u‖1 +
γ1

γ

√
µ

2
‖H‖1 <

α0ν

γ
, ‖u‖1 +

√
µ

2
‖H‖1 <

α1νm
γ1µ

. (2.8)

Proof. We assume that the problem 1 has two solutions (u1,H1) and (u2,H2). Then, their difference
(u = u1 − u2 ∈ V and H = H1 −H2 ∈ VT ) satisfies the condition

νa0(u,u) + ν1a1(H,H) + c(u,u1,u) + µc1(H,H,u1)− µc1(H1,H,u) = 0. (2.9)

By virtue of (1.8) and (1.9) the following estimates are valid:

|c(u,u1,u)| 6 γ‖u1‖1‖u‖21, µ|c1(H,H,u1)| 6 γ1µ‖u1‖1‖H‖21,

µ|c1(H1,H,u)| 6 γ1µ‖H1‖1‖H‖1‖u‖1 6 γ1
√
µ‖H1‖1(µ‖H‖21 + ‖u‖21)/2.

(2.10)

Using (2.10) with allowance for (1.6) and (1.7), from (2.9) we obtain

(α0ν − γ‖u1‖1 − γ1
√
µ‖H1‖1/2)‖u‖21 + (α1ν1 − γ1µ‖u1‖1 − γ1µ

√
µ‖H1‖1/2)‖H‖21 6 0. (2.11)

Assuming that the solution (u1,H1) satisfies conditions (2.8), from (2.11) we obtain u = 0 and H = 0 and,
hence, u1 = u2 and H1 = H2. We note that by virtue of Theorem 2.1, condition (2.8) is necessarily satisfied if the
initial data f and E0 are “small” in the sense that (1 + æ

√
µ)(‖f‖ + µ‖E0‖) 6 λ∗min (α0ν/γ, α1νm/γ1), where

æ = (1/2) max (1, γ1/γ).
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3. Formulation and Examination of the Control Problem. The current density E0 is further
considered the required control and is designated by g (g varies in a certain set K). We assume that for K the
following condition hold.

Condition 4. K ⊂ L2(Ω) is a nonempty closed convex set.
To formulate the control problem, we introduce a quality functional of the form J(x, g) = J̃(x) + α |g |2/2

(α = const). Here J̃ : X → R is a functional that is weakly semicontinuous from below. In addition to Condition 4,
we assume that the following condition holds:

Condition 5. α > 0 and K is a limited set or α > 0 and the functional J̃ is bounded from below.
Considering the functional J on weak solutions of the Problem 1, we write the main constraint (2.4) between

the state x = (u,H) and the control g:

F (x, g) ≡ F (u,H, g) = 0. (3.1)

Here F is an operator that acts from X ×K in X∗ by the formula

〈F (x, g), (v,Ψ)〉 = a((u,H), (v,Ψ)) + c(u,u,v) + µ[c1(Ψ,H,u)− c1(H,H,v)]− 〈F , (v,Ψ)〉.

We consider the problem

J(x, g) ≡ J(u,H, g)→ inf, F (x, g) = 0, (x, g) ∈ X ×K. (3.2)

As the possible quality functionals, we consider the following:

J1(x) =
1
2

∫
Ω

| rotu|2 dΩ, J2(x) =
1
2

∫
Ω

|u− ud|2 dΩ, J3(x) =
1
2

∫
Ω

|H −Hd|2 dΩ. (3.3)

Here ud ∈ L2(Ω) and Hd ∈ L2(Ω) are specified functions. (For the functionals Jk see [8, 11].) We set Zad = {(x, g)
∈ X ×K: F (x, g) = 0, J(x, g) <∞}.

Theorem 3.1. Let Conditions 1, 2, 4, and 5 be satisfied, J̃ : X → R be a functional that is weakly
semicontinuous from below, and the set Zad be not empty. Then there exists at least one solution of the problem (3.2).

Proof. We use (xm, gm) ≡ (um,Hm, gm) ∈ Zad to designate the minimizing sequence for which
lim
m→∞

J(xm, gm) = inf
(xm,gm)∈Zad

J(xm, gm) ≡ J∗. By virtue of Condition 5 and Theorem 2.1, for the controls

gm and solutions (um,Hm) of the Problem 1, the estimates ‖gm‖ 6 c1, ‖um‖1 6 c2, and ‖Hm‖1 6 c3 hold; the
constants c1, c2, and c3 do not depend on m. From this it follows that there exist weak limits g∗ ∈ K, u∗ ∈ V ,
and H∗ ∈ VT of some subsequences of the sequences {gm}, {um}, and {Hm}. Reasoning as in [5], we obtain
F (u∗,H∗, g∗) = 0; in this case, because the functional J is weakly semicontinuous from bellow, it follows that
J(u∗,H∗, g∗) = J∗.

We note that each of the functionals J1, J2, and J3 is nonnegative, is bounded from below, and is weakly
semicontinuous from below. This fact and theorem 3.1 imply the following theorem:

Theorem 3.2. If the conditions of Theorem 3.1 are satisfied, the extremum problem (3.2) has at least one
solution for J̃ = Jk (k = 1, 2, 3).

Let us prove the possibility of using the principle of undetermined Lagrangian multipliers for the extremum
problem (3.2). As in [4–6], we employ the extremum principle in smoothly convex problems of conditional minimiza-
tion [7]. We first calculate the partial Frechet derivative F ′x(x̂, ĝ): X → X∗ of the operator F . From the definition
of the derivative, it follows that at any point (x̂, ĝ) ≡ (û, Ĥ, ĝ) ∈ X ×K, the derivative F ′x(x̂, g) is a linear contin-
uous operator that sets a correspondence between each element (w,h) ∈ X and the functional F ′x(x̂, ĝ)(w,h) ∈ X∗
which acts by the formula

〈F ′x(x̂, ĝ)(w,h), (v,Ψ)〉 = νa0(w,v) + ν1a1(h,Ψ) + [c(û,w,v) + c(w, û,v)]

+ µ[c1(Ψ,h, û) + c1(Ψ, Ĥ,w)]− µ[c1(Ĥ,h,v) + c1(h, Ĥ,v)] ∀(v,Ψ) ∈ X = V × VT . (3.4)

A simple analysis shows that for all functionals in (3.3), the Frechet derivatives with respect to u and H at any
point x̂ ∈ X exist and belong to the space X∗. In particular,

〈(J1)′u(x̂),w〉 =
∫
Ω

rot û · rotw dΩ, 〈(J2)′u(x̂),w〉 =
∫
Ω

(û− ud) ·w dΩ ∀w ∈ V . (3.5)
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Let us introduce a set F (x̂,K) = F (û, Ĥ,K) which is a convex subset of the space X∗. We set
z = (ξ,η) ∈ X and introduce a Lagrangian L for the functional J using the formula L(x, g, λ0,z) = λ0J(x, g)
+ 〈F (x, g), (ξ,η)〉X∗×X .

Theorem 3.3. If Conditions 1, 2, and 4 are satisfied, let (x̂, ĝ) ≡ (û, Ĥ, ĝ) ∈ X ×K be a local minimum
point in the problem (3.2) and let the functional J(x, g) be continuously differentiable with respect to x at the point
x̂ for any element g ∈ K and be convex over g for each point x ∈ X. Then there exists a nonzero Lagrangian
multiplier (λ0,z) ≡ (λ0, ξ,η) ∈ R+ ×X such that the Euler–Lagrange equation

λ0〈J ′x(x̂, ĝ), (w,h)〉X∗×X + 〈F ′x(x̂, ĝ)(w,h), (ξ,η)〉X∗×X = 0 ∀(w,h) ∈ X (3.6)

is valid and the minimum principle L(x̂, ĝ, λ0, ξ,η) 6 L(x̂, g, λ0, ξ,η) holds for g ∈ K or

(g − ĝ,η) 6 λ0[J(x̂, g)− J(x̂, ĝ)] ∀g ∈ K. (3.7)

Proof. By virtue of theorem 3 in [7, chapter 1], to prove the existence of the Lagrangian multiplier (λ0,z)
taking into account the differentiability of F on X for each g ∈ K and the convexity of the sets K and F (x̂,K), one
needs to show the operator F ′x(x̂, ĝ): X → X∗ is a Fredholm one. By virtue of (3.4), we have F ′x(x̂, ĝ) = F̂1 + F̂2,
where 〈F̂1(w,h), (v,Ψ)〉 = a((w,h), (v,Ψ)) + c(û,w,v) + µ[c1(Ψ, Ĥ,w) − c1(h, Ĥ,v)] and 〈F̂2(w,h), (v,Ψ)〉
= c(w, û,v) + µ[c1(Ψ,h, û) − c1(Ĥ,h,v)]. Obviously, the operator F̂1: X → X∗ is linear, continuous and,
moreover, coercive because, by virtue of (1.10) and (1.11), 〈F̂1(v,Ψ), (v,Ψ)〉 = a((v,Ψ) and (v,Ψ)) > λ∗‖(v,Ψ)‖21.
In addition, Eqs. (1.8) and (1.9) and the compactness of the embedding H1(Ω) ⊂ L4(Ω) imply the continuity and
compactness of the operator F̂2. From this it follows that the operator F ′x(x̂, ĝ) = F̂1 + F̂2 is a Fredholm one
because it is the sum of an isomorphism and a continuous compact operator.

It is easy to see that each of the functionals J1, J2, and J3 introduced above satisfies all conditions of
Theorem 3.3. Moreover, the Euler–Lagrange equation (3.6) provides additional information on their properties.
For this, taking into account Eq. (3.4) we write Eq. (3.6) in the form

λ0〈J ′x(x̂, ĝ), (w,h)〉X∗×X + νa0(w, ξ) + ν1a1(h,η) + [c(û,w, ξ) + c(w, û, ξ)]

+ µ[c1(η,h, û) + c1(η, Ĥ,w)]− µ[c1(Ĥ,h, ξ) + c1(h, Ĥ, ξ)] = 0 ∀(w,h) ∈ X. (3.8)

First setting h = 0 and then w = 0 in (3.8), we arrive at the following identities:

νa0(w, ξ) + c(û,w, ξ) + c(w, û, ξ) + µc1(η, Ĥ,w) + λ0〈J ′u(x̂, ĝ),w〉 = 0 ∀w ∈ V ; (3.9)

ν1a1(h,η) + µc1(η,h, û)− µ[c1(Ĥ,h, ξ) + c1(h, Ĥ, ξ)] + λ0〈J ′H(x̂, ĝ),h〉 = 0 ∀h ∈ VT . (3.10)

As a result, we obtain the optimality system for determining the required control ĝ and its corresponding
“optimal” distributions of the velocity and magnetic field in the domain Ω. This system consists of three parts.
The first part has the form of the weak formulation (2.4) of Problem 1, equivalent to (3.1), the second part includes
the identities (3.9) and (3.10) for (ξ,η), and the last part is inequality (3.7).

Remark 3.1. We note that the first two parts of the optimality system are formally obtained by equating
to zero the first derivatives (first variations) of the Lagrangian L with respect to the corresponding variables. In
particular, (2.4) is obtained by equating to zero the first variation of the Lagrangian L over (ξ,η), whereas (3.9)
and (3.10) are obtained by equating to zero the first variations over u and H.

Let us show that system (3.9), (3.10) can be treated as a weak formulation of a certain boundary-value
problem for Lagrange multipliers (ξ,η). Assuming for simplicity that Ω is a simply connected domain, so that
H(m) = {0}, and the embedding V ⊂ VT is valid, we introduce a linear operator SV : V ∗T → V ∗ which acts by the
formula

〈SV l,h〉V ∗×V = 〈l,h〉V ∗T ×VT ∀l ∈ V ∗T , h ∈ V ⊂ VT . (3.11)

Equations (1.12)–(1.14), (1.10), and (1.5) lead to the relations

a0(w, ξ) = −〈∆ξ,w〉, b(w, σ) = 〈∇σ,w〉, a1(h,η) = 〈rot rotη,w〉,

c(û,w, ξ) = −c(û, ξ,w) ≡ −((û · ∇)ξ,w), c(w, û, ξ) ≡
∫
Ω

(w · ∇)û · ξ dΩ = (∇ût · ξ,w),

c1(η, Ĥ,w) = (rotη × Ĥ,w), c1(η,h, û) = −(rotη × û,h), (3.12)
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c1(Ĥ,h, ξ) = −(rot Ĥ × ξ,h), c1(h, Ĥ, ξ) ≡ (roth, Ĥ × ξ) = (rot(Ĥ × ξ),h) ∀(w,h) ∈H1
0 (Ω)2,

where ∇ût is a tensor conjugate to ∇û. Using these relations, we obtain

νa0(w, ξ) + c(û,w, ξ) + c(w, û, ξ) + µc1(η, Ĥ,w) = −ν〈∆ξ,w〉

− ((û · ∇)ξ,w) + (∇ût · ξ,w) + µ(rotη × Ĥ,w) ∀w ∈H1
0 (Ω); (3.13)

ν1a1(h,η) + µc1(η,h, û)− µ[c1(Ĥ,h, ξ) + c1(h, Ĥ, ξ)] = νm〈rot rotη,h〉

− µ(rotη × û,h) + µ(rot Ĥ × ξ,h)− µ(rot(Ĥ × ξ),h) ∀h ∈H1
0 (Ω). (3.14)

Assuming that the Frechet derivatives of the functional J satisfy the conditions

J ′u(x̂, ĝ) ∈H−1(Ω), SV J
′
H(x̂, ĝ) ∈H−1(Ω), (3.15)

we introduce the following functionals in H1
0 (Ω): L1 = −ν∆ξ − (û · ∇)ξ +∇ût · ξ + µ rotη × Ĥ + λ0J

′
u(x̂, ĝ) and

L2 = ν1 rot rotη − µ rotη × û + µ rot Ĥ × ξ − µ rot (Ĥ × ξ) + λ0SV J
′
H(x̂, ĝ). From (3.13) and (3.14) it follows

that the identity (3.9) and the restriction of the identity (3.10) on V can be written as 〈L1,w〉 = 0 ∀w ∈ V and
〈L2,h〉 = 0 ∀h ∈ V . Since, by virtue of (3.15), Li ∈H−1(Ω), from [10, p. 22] it follows that there exist functions
σ ∈ L2

0(Ω) and ψ ∈ L2
0(Ω) such that

−ν∆ξ − (û · ∇)ξ +∇ût · ξ + µ rotη × Ĥ +∇σ = −λ0J
′
u(x̂, ĝ) in H−1(Ω); (3.16)

ν1 rot rotη − µ rotη × û+ µ rot Ĥ × ξ − µ rot (Ĥ × ξ) +∇ψ = −λ0SV J
′
H(x̂, ĝ) in H−1(Ω). (3.17)

Let us formulate the result obtained.
Theorem 3.4. Let Ω be a simply connected domain and the conditions of Theorem 3.3 and (3.15) be satisfied.

Then, there exist functions (ξ,η) ∈ V × VT , σ ∈ L2
0(Ω) and ψ ∈ L2

0(Ω) and a constant λ0 > 0 such that they,
together with the element (x̂, ĝ) = (û, Ĥ, ĝ), fit Eqs. (3.16) and (3.17), the identities (3.9) and (3.10), and the
minimum principle (3.7).

Remark 3.2. Although the functions σ and ψ formally do not enter into the expression for L, they can be
considered Lagrangian multipliers that are conjugate to the pressure p and the electric field potential E included
in the model (1.1), (1.2).

We assume that the Lagrange multipliers ξ, η, σ, and ψ, as well as the functions û and Ĥ, possess additional
smoothness; namely, (ξ,η, û, Ĥ) ∈ H1(∆; Ω), (σ, ψ) ∈ H1(Ω). Then, from (3.9), (3.10) and (3.16), (3.17), one
can derive “pointwise” differential equations and boundary relations for ξ, η, σ, and ψ. Indeed, if these conditions
are satisfied, the left side in (3.17), as well as the right side, is a function that belongs to the space L3/2(Ω),
and rot rotη ≡ ∆η ∈ L2(Ω). In view of this, it is possible to multiply (3.17) by the function h ∈ VT ⊂ L6(Ω)
and integrate over the domain Ω. Applying the Green formula (1.13) for q = rotη ∈ H(rot; Ω) and taking into
account (3.12), we arrive at the identity

ν1a1(η,h)− ν1〈rotη × n,h〉Γ + µc1(η,h, û)− µc1(Ĥ,h, ξ)− µc1(h, Ĥ, ξ)

= −λ0

∫
Ω

SV J
′
H(x̂, ĝ) · h dΩ ∀h ∈ VT . (3.18)

Subtracting the identity (3.18) from the identity (3.10), we obtain

ν1〈rotη × n,h〉Γ = λ0

∫
Ω

SV J
′
H(x̂, ĝ) · h dΩ− λ0〈J ′H(x̂, ĝ),h〉 ∀h ∈ VT . (3.19)

Let us consider the case J̃ = J1 [J1 is defined by the first formula in (3.3)]. A simple analysis taking into
account (3.5) and (1.13) shows that

〈(J1)′u(x̂, ĝ),w〉 =
∫
Ω

rot û · rotw dΩ =
∫
Ω

rot rot û ·w dΩ ∀w ∈ V ,

(J1)′H(x̂, ĝ) = 0.
(3.20)
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Using (3.20), we write (3.16), (3.17), and (3.19) as

−ν∆ξ − (û · ∇)ξ +∇ût · ξ + µ rotη × Ĥ +∇σ = −λ0 rot rot û in Ω; (3.21)

ν1 rot rotη − µ rotη × û+ µ rot Ĥ × ξ − µ rot (Ĥ × ξ) +∇ψ = 0 in Ω; (3.22)

ν1〈rotη × n,h〉Γ = 0 ∀h ∈ VT . (3.23)

Equations (3.21) and (3.22), together with the relations

div ξ = 0, divη = 0 in Ω, ξ = 0, η · n = 0 on Γ, rotη × n = 0 on Γ (3.24)

resulting from the conditions ξ ∈ V and η ∈ VT and (3.23), characterize the second part of the optimality system
for the problem (3.2) for J̃ = J1 if condition (3.15) is satisfied.

If the form of the functional J̃ changes, some of the relations given above also change. In particular, for
the functional J2, which, like J1, depends only on u, Eq. (3.21) for the multiplier ξ changes and, with allowance
for (3.5), it becomes

−ν∆ξ − (û · ∇)ξ +∇ût · ξ + µ rotη × Ĥ +∇σ = −λ0(û− ud) in Ω, (3.25)

whereas relations (3.22) and (3.24) remain unchanged. Similarly, for the functional J3, which depends only on H,
we have (J3)′u = 0,

〈(J3)′H(x̂, ĝ),h〉 =
∫
Ω

(Ĥ −Hd) · h dΩ ∀h ∈ VT ,

SV [(J3)′H(x̂, ĝ)] = Ĥ −Hd ∈ L2(Ω).
(3.26)

Taking (3.26) into account, from (3.16), (3.17), and (3.19), we obtain relations (3.24) and the equation

−ν∆ξ − (û · ∇)ξ +∇ût · ξ + µ rotη × Ĥ +∇σ = 0 in Ω; (3.27)

ν1 rot rotη − µ rotη × û+ µ rot Ĥ × ξ − µ rot (Ĥ × ξ) +∇ψ = −λ0(Ĥ −Hd) in Ω. (3.28)

If the functions û and Ĥ are known, relations (3.21), (3.22), and (3.24), or (3.25), (3.22), and (3.24), or
(3.27), (3.28), and (3.24) form a closed system of linear equations for the Lagrangian multipliers ξ, η, σ, and ψ that
is equivalent, by virtue of theorem 3.3, to the linear Fredholm problem. In the general case where û and Ĥ are
unknown, the indicated relations represent the second part of the optimality system that corresponds to the control
problem (3.2) for the functionals J1, J2, and J3. These relations should be considered together with the identity (2.4)
or (3.1), which form the first part of the optimality system, and inequality (3.7). Obviously, solving the optimality
system obtained is a rather complicated problem which requires developing effective numerical algorithms.

I thank V. N. Monakhov for the formulation of the problem and valuable advice.
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